
EUD from a Historical Perspective as Cause to
Redefine it in Today’s Landscape

Nikolaos Batalas
nikolaos.batalas@gmail.com

Eindhoven University of Technology

Javed-Vasilis Khan
v.j.khan@tue.nl

Eindhoven University of Technology

Panos Markopoulos
p.markopoulos@tue.nl

Eindhoven University of Technology

ABSTRACT
This paper aims to bring into focus contradictions in prevail-
ing approaches to defining End User Development (EUD).
Motivated by a paradox we observed given these definitions,
we invite researchers to reconsider the scope of EUD as en-
compassing the whole of software development, and point
to the historical evolution of the circumstances under which
software is developed for reasons to do so.

1 INTRODUCTION
End-User Development (EUD) is a field of research dedicated
to making software.1 It differs from the traditional academic
disciplines dedicated to the task, such as computer science,
in that it aims to allow people to build computer programs
that help them perform certain tasks, without demanding
that these programmers have to rely on the depth of knowl-
edge and expertise that it takes to program computers on
the technical level that the traditional disciplines are con-
cerned with, such as the construction of algorithms, or the
implementation and manipulation of data structures.

Contradictory definitions of EUD are in use
Consensus is not uniform amongst researchers in EUD with
regard to a definition of the nature of the issue and the cohort
under investigation. Commonly cited definitions, tend to
be inclusive, summative descriptions of research that has
taken place in the field, rather than the activity, End-User
Development, itself. For example, a definition often cited in
contemporary literature is offered by Lieberman et al [14]:

End-User Development can be defined as a set
of methods, techniques, and tools that allow
users of software systems, who are acting as
non-professional software developers, at some
point to create, modify or extend a software arte-
fact.

As is the case in this definition, the tendency to define
end-users and their activities as opposites to professional
1Related terms such as End-User Programming (EUP) or End-User Soft-
ware Engineering (EUSE) all address specific aspects of software cre-
ation/maintenance, program creation in the first instance, reliability, reuse
and maintainability in the latter. Since EUP and EUSE take place in the
service of development, we can consider EUD to be the more encompassing
term.

developers and their activities, is pervasive throughout lit-
erature. Attempts at defining each role tend to be mostly
in service of illustrating a particular point that the author
is making, and can be found to contradict other definitions.
For example, in [14], [13], [23], end-users are regarded as
novices or less skilled than programmers. Nardi [20] regards
end-users as professionals in unrelated fields, who do not
care about computers, but want to get their work done. Ko et
al. [12] acknowledge the problems of considering end-user
programmer characteristics a matter of personal identity
and instead propose that the characterization end-user vs
professional is a matter of intent. End-user or professional
developer then is a role one performs at any given time, the
degree of which is determined not by skill and expertise,
but by the number of users they are serving their product
to, with serving one’s own needs being the definition of
end-user development.

Authors offer definitions of EUD in order to get their point
across to readers, and to do so attempt to capture aspects
that feature prominently, but might not be exhaustive. Evi-
dently, definitions of EUD evolve over time, but also co-exist
with each other. Also, the dichotomy between end-users and
professionals remains undisputed, and the task of program-
ming, especially when referring to professionals, is treated
wholesale, without nuance as to what is being programmed.

A paradox in Ambulatory Assesment
Ambulatory Assessment is a field of research within clini-
cal psychology with the purpose of capturing bio-psycho-
social processes in the context of daily life [8], gathering
self-reports and sensor measurements from groups of people
over time. Data collection happens predominantly via mo-
bile platforms and considerable effort goes into the making
of tools to enable clinical psychologists to define what data
these platforms collect and how [3]. With these tools, psy-
chologists effectively write software which they distribute
to potentially hundreds of users, their study participants,
to use for recording data. Depending on what aspect of the
effort one focuses on, under Ko et. al [12] psychologists could
be considered akin to professional developers for intending
their software to be used by numerous end-users, or they
could be considered end-user developers for intending to get
their own work done.



,
,

Nikolaos Batalas, Javed-Vasilis Khan, and Panos Markopoulos

Definitions of EUD are important
The definition of EUD is an essential issue. Lieberman et
al. [14] stress the importance of EUD for the participation
of citizens in the Information Society. The stakes therefore
are high, and the field needs to remain vigilant towards the
clarity of its vision and communications. Amoroso et al. [2]
warn against the dangers of variable definitions. Differing
perspectives might render research results incomparable,
and researchers are forced to recreate frameworks in which
to work. Fischer et al. [11] also point out that there exists a
challenge for the EUD research community in understanding
and supporting existing and new cultures, and call for an
analytic model to understand and explain phenomena and
environments. They also note that the impact of EUD re-
search has been limited. The fact that a deep understanding
of the phenomena under investigation is still sought after,
could be a contributing factor to EUD’s limited impact.

In the rest of this text we hope to show that the conception
of the end-user and the professional developer is historically
evolving according to the platform being used, and also that
the history of computer programming is really a history of
end-user programming. Given the paradox in Ambulatory
Assessment, we will attempt a definition of EUD driven by
platform, rather than identity or intent.

2 END-USER DEVELOPERS HISTORICALLY
The term end-user is arguably an invention of IBM in the
50s [16]. It was used to point to people such as corporate
executives who would be the budget holders responsible
for commissioning the technology[21], and separate them
from intermediate users, usually experts who would operate
the machines[22], working in data processing departments,
tasked with answering questions posed to them by manage-
ment.

In the 60s and 70s, solid state transistors and the microchip
brought speed and power to mainframes, and gave rise to
minicomputers. Computing became dramatically cheaper
and thus more accessible to members of organizations work-
ing outside of computer centers. End-users were now people
with access to machines, and computing departments started
dealing with the strategies for organizations to provide their
members with access to applications of the enterprise, as
well as manage their workload.

As the trend continued In the late 70s and 80s, employ-
ees were able to independently procure their own personal
microcomputers[4]. End-users were the users of application
software which they used to do their own data processing,
and the field of End User Computing (EUC) camemore promi-
nently into being, specifically concerned with computing
within organizational settings. Growing demand for soft-
ware solutions led EUC research to consider how to let these

end-users become developers of their own programs [17].
For the purpose of studying the use of computers in organi-
zational settings, taxonomies of users were proposed [7] [17]
[24] [9]. Classifications of this sort make sure to set apart
data-processing professionals, who are employed to write
code for others. Workers of the organization who are trained
in other domains are classified as amateurs, who according to
Weinberg [26] only program for themselves. This is perhaps
the reason why end-user developers are juxtaposed against
professional developers, to this day.

During this time and into the 90s with the popularization
of the Graphical User Interface (GUI), desktops were adopted
even more widely, and the electronic spreadsheet became
one of the most popular applications for data-processing
by end-users. It offered an easy to understand and visually
manipulate data structure, and allowed users to perform
automated operations on it in ways more intuitive than the
type definitions, loops and memory management of typical
programming. It became one of the most prominent success
stories in literature for End User Programming.
Gradually, EUC in organizations became less concerned

with application software and EUD. Data processing de-
partments evolved into Information Technology (IT) depart-
ments, managing the technology infrastructure which al-
lowed an organization to run, i.e. hardware, networks, soft-
ware licences and data storage, and supporting end-users
in accessing it. Security and scalability became the more
prominent issues.

EUD moved into the domain of Human Computer Interac-
tion (HCI) [19], where research was invested in understand-
ing and supporting programming tasks, both as a general
issue, and also within specific application domains. As com-
puting became a staple of daily life in various forms, dis-
cussions on EUD also became disentangled from explicitly
organizational settings. It seems plausible however that con-
ceptions of end-users and professional programmers have
their origins in those settings and their specific concerns.

3 PROFESSIONAL DEVELOPERS
Programmers have always tried to build platforms that would
allow them to function as end-user developers on. That is, as
people who want to get their work done and should not have
to care about (some aspects of) the computer, as in Nardi [20].
We maintain that the evolution of computer programming
and its related tools is very much an EUD success story.
Historically, many advances in computer programming

have come in the form of layers of abstraction, whereby
two things are achieved; the creator of the abstraction is
able to suppress details of the underlying layers, which are
irrelevant to a certain programming task, and also, to invent
and express the model of a machine which is relevant to the



EUD from a Historical Perspective as Cause to Redefine it in Today’s Landscape

,
,

task, and perhaps even already familiar to the user of the
abstraction [15].

After initial innovations in performing binary operations
with relays and switches[25] and the first electronic com-
puters in the 40s, the 50s saw the rise of the stored program
and the programmable computer, where the hardware does
not need to be re-wired per program. In 1952, Adams [1]
discusses how subroutines, accessible as symbols of abbre-
viated words make it possible for the increasing number of
computer users to produce usable programs of numerical
analysis. His focus lies on allowing entry level programmers
to achieve results, and envisions that a verbal statement of
the problem will be sufficient for the computer.
In subsequent years, a host of programming languages

and compilers were invented to people who wished to pro-
gram computers in terms closer to their level of expertise
or to their application domain. Many of the innovations we
regard today as arcane were driven by the personal needs of
their inventors to get their job done. For example, FORTRAN,
offering a way to define algebraic expressions, was heralded
as a “revolution [..] to have engineers, scientists, and other
people actually programming their own problems without
the intermediary of a professional programmer”[10]. UNIX
came into being because of the desire of its makers to have
their own time-sharing system. The C language offers pro-
grammers the model of an abstracted computer with certain
features to manage its memory, and allows them to (largely)
not care about the particulars of the hardware itself.

Innovationswith regard tomaking code reusable, rendered
so by programming-language constructs such as classes,
objects, encapsulation, and distributing as code libraries,
is a way of making these software artifacts end-user pro-
grammable. Notably, programmers in their daily practice
set intermediate personal goals to structure their code in
such ways as to build abstractions and interfaces and hide
its complexity, so as to later render themselves end-users of
it, and make it easier for themselves to get their job done by
using it as a functional unit.

Furthermore, software development is not a single domain,
and does not imply a singular technical profile of a practi-
tioner. Different programmers develop their craft in vastly
different technical problems that they are trying to solve,
have domain knowledge on different levels of abstraction
within the software-hardware stack, many of which have
their own elaborate theoretical backgrounds (e.g. graphics
programming vs database programming) and are end-users
of various tools and platforms in order to carry out their
work. Illustrative of this are job listings seeking professional
programmers, which advertise not only for a particular ap-
plication domain (e.g. front-end development) or a specific
programming language (e.g. JavaScript) but for familiarity
with specific code libraries and APIs (e.g. Angular vs React).

Also nowadays, it seems that tools typically used in the
realm of professional software development, such as expert-
exhanges (e.g. stackoverflow), where discussions are held
on how various pieces of code can be used, code reposito-
ries and issue trackers (e.g. github), where people reuse and
modify existing programs, report bugs, and propose desired
features, or code sandboxes (e.g. jsfiddle) which illustrate
code execution, are in the service of facilitating cultures of
participation [11], as envisioned for EUD.

4 DISCUSSION
End-User vs Professional
Researchers in the field choose to define the End-User De-
velopers by opposing them to Professional Developers, be-
cause ordinarily, someone who receives a salary to develop
code would have a radically different approach to the prob-
lems, informed by radically different concerns. However, the
term end-user describes a person’s relationship to a plat-
form, while the second an organized way to make a living.
These terms are not in opposition to each other, but rather
orthogonal concerns, unrelated to each other.
This can be illustrated by considering an EUD method,

process or tool that would come to be so successful, as to pro-
duce reliable and useful software artifacts for large numbers
of users, and that would allow the authors of that software to
make a living out of it, and devote themselves to it profession-
ally. Surely that process would still be an EUD process, and
the developers using it, would still be end-user developers
since none of its intrinsic characteristics would change.

End-User vs Technical, as seen by Platform
In his Theoretical Introduction to Programming, Mills [18]
devotes a section to the notion of Technical Programming:

Technical programming is about defining a spe-
cific problem as clearly as possible, and obtain-
ing a clear solution.[...] It has much in common
with the technical (rather than bureaucratic) as-
pects of all engineering disciplines.[...] Precise
subproblems are identified.[...] What is, or is not,
technical depends on the techniques available.

Perhaps then, in the place of Professional Programming,
we can adopt the term Technical Programming, one that fo-
cuses only on the task itself, and the kind of engagement with
problem-solving that demands good grounding in methodol-
ogy, the ability to identify sub-problems, and to give struc-
ture to the problem domain [18]. Where End-User Program-
ming would consist of, e.g., using function calls on a plat-
form/abstraction, Technical Programming would be building
the platform/abstraction and the functions that end-user
programmers can call.



,
,

Nikolaos Batalas, Javed-Vasilis Khan, and Panos Markopoulos

Finally, we propose that a platform-driven lens can be
developed to help determine the nature of one’s software
development task at a specific point in time as being end-
user development or technical development. Platform is a
framework (be it hardware or software) that supports other
programs. Platform studies [5] offer the theoretical frame-
work both for conducting a discourse on platforms and when
and whether it is useful to view a given system as such [6],
not only from a technical, but also from a cultural perspec-
tive.
In adopting a platfor-driven view, one would have to ac-

knowledge that End User Development is part and parcel of
any creative programming endeavour, and practiced daily
in professional or other settings, since making use of the
abstractions a platform offers, is to perform EUD on it. As
these abstractions are used in the service of more technical
problems, so does the development task become of a tech-
nical nature, possibly leading to a new layer of abstraction,
and the cycle repeats.

Paradox resolution
A platform-driven view of End User Development could help
resolve the paradox mentioned in Ambulatory Assessment
(AA), by considering the population of mobile phone users in
the data collection effort as a system of two layered platforms.
The first is the AA mobile software platform, the abstrac-
tions of which the clinical psychologist uses as an end-user
developer,to program each mobile phone’s behaviour, e.g for
signaling a participant to provide self-reports. Collectively,
the cohort of participants with their mobile phones, com-
prise a higher-level platform that generates the data that the
clinical psychologist can feed into their analysis.

5 CONCLUSION
Both end-user and developer are largely inventions of the
platform being used and developed on. As platforms evolve
through history, our understanding of who end-user devel-
opers are and what they do evolve as well. Increasingly,
software development takes place on such multiple layers
of abstraction, with platforms and tools already delivered
to the developers, that an EUD aspect is always involved. A
platform-driven definition of EUD, inclusive of all types of
developers as beneficiaries of its findings, could better reflect
this state of things, and also anticipate the future.

REFERENCES
[1] Charles W Adams. 1952. Small problems on large computers. In Pro-

ceedings of the 1952 ACM national meeting (Pittsburgh). 99–102.
[2] Donald L Amoroso. 1992. Using end user characteristics to facilitate

effectivemanagement of end user computing. Journal of Organizational
and End User Computing (JOEUC) 4, 4 (1992), 5–16.

[3] Nikolaos Batalas, Vassilis-Javed Khan, Minita Franzen, Panos
Markopoulos, and Marije aan het Rot. 2019. Formal representation

of ambulatory assessment protocols in HTML5 for human readabil-
ity and computer execution. Behavior Research Methods 51, 6 (2019),
2761–2776. https://doi.org/10.3758/s13428-018-1148-y

[4] David H Benson. 1983. A field study of end user computing: Findings
and issues. Mis Quarterly (1983), 35–45.

[5] Ian Bogost and Nick Montfort. 2007. New media as material con-
straint: An introduction to platform studies. In Electronic Techtonics:
Thinking at the Interface. Proceedings of the First International HASTAC
Conference. 176–193.

[6] Ian Bogost and Nick Montfort. 2009. Platform studies: Frequently
questioned answers. (2009).

[7] Codasyl End User Facilities Committee et al. 1979. Codasyl end user
facilities committee status report.

[8] Tamlin S Conner and Matthias R Mehl. 2015. Ambulatory assessment:
Methods for studying everyday life. Emerging Trends in the Social
and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable
Resource (2015).

[9] William W Cotterman and Kuldeep Kumar. 1989. User cube: a taxon-
omy of end users. Commun. ACM 32, 11 (1989), 1313–1320.

[10] Nathan L Ensmenger. 2012. The computer boys take over: Computers,
programmers, and the politics of technical expertise. Mit Press.

[11] Gerhard Fischer. 2009. End-user development and meta-design: Foun-
dations for cultures of participation. In International Symposium on
End User Development. Springer, 3–14.

[12] Andrew J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, et al. 2011. The state of the art in end-user
software engineering. ACM Computing Surveys (CSUR) 43, 3 (2011),
1–44.

[13] Henry Lieberman. 2001. Your wish is my command: Programming by
example. Morgan Kaufmann.

[14] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf.
2006. End-user development: An emerging paradigm. In End user
development. Springer, 1–8.

[15] Barbara Liskov and Stephen Zilles. 1974. Programming with abstract
data types. ACM Sigplan Notices 9, 4 (1974), 50–59.

[16] Wendy E Mackay. 1990. Users and customizable software: A co-adaptive
phenomenon. Ph.D. Dissertation. Citeseer.

[17] Ephraim R McLean. 1979. End users as application developers. MIS
quarterly (1979), 37–46.

[18] Bruce Ian Mills. 2005. Theoretical introduction to programming.
Springer Science & Business Media.

[19] Brad A Myers, Andrew J Ko, and Margaret M Burnett. 2006. Invited re-
search overview: end-user programming. In CHI’06 extended abstracts
on Human factors in computing systems. 75–80.

[20] Bonnie A Nardi. 1993. A small matter of programming: perspectives on
end user computing. MIT press.

[21] Jan Noyes and Chris Baber. 1999. User-centred design of systems.
Springer Science & Business Media.

[22] Stephen P Plusch. 1984. The Evolution from Data Processing to Infor-
mation Resource Management. Technical Report. ARMY WAR COLL
CARLISLE BARRACKS PA.

[23] Alexander Repenning and Andri Ioannidou. 2006. What makes end-
user development tick? 13 design guidelines. In End user development.
Springer, 51–85.

[24] John F Rockart and Lauren S Flannery. 1983. The management of end
user computing. Commun. ACM 26, 10 (1983), 776–784.

[25] Claude E Shannon. 1938. A symbolic analysis of relay and switching
circuits. Electrical Engineering 57, 12 (1938), 713–723.

[26] Gerald MWeinberg. 1998. The Psychology of Computer Programming;
1971. New York: von Nostrand Reinhold (1998).

https://doi.org/10.3758/s13428-018-1148-y

	Abstract
	1 Introduction
	Contradictory definitions of EUD are in use
	A paradox in Ambulatory Assesment
	Definitions of EUD are important

	2 End-user developers historically
	3 Professional developers
	4 Discussion
	End-User vs Professional
	End-User vs Technical, as seen by Platform
	Paradox resolution

	5 Conclusion
	References

